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The transition of strictly two-dimensional Poiseuille flow from laminar to chaotic 
behaviour is studied through full numerical simulation of spatially periodic channels 
with fairly large longitudinal aspect ratios. The successive bifurcations are studied in 
detail and their physical mechanism is elucidated. The Liapunov exponents of the 
flow are measured and shown to be positive a t  large Reynolds numbers. Isolated, 
permanent patches of unsteady behaviour, resembling the turbulent ‘puffs ’ observed 
in circular pipes, are found at low Reynolds numbers and shown to be important for 
the transition to chaos. The flow exhibits several other phenomena present in natural 
three-dimensional flows, including wall sweeps, ejections, and intermittency. 

1. Introduction 
It is generally accepted that turbulence, and, in particular, wall turbulence, is a 

three-dimensional phenomenon in which processes such as vortex tilting and 
stretching play important roles. It has also been shown recently that transition to 
turbulence in wall-bounded flows is intrinsically three-dimensional, even if linear 
stability theory predicts that two-dimensional disturbances are unstable at lower 
Reynolds numbers than their three-dimensional counterparts. It appears that these 
disturbances are indeed the first ones to grow, but that, as soon as their amplitude 
is finite, they become themselves unstable to much faster three-dimensional 
secondary instabilities, which quickly become dominant, and lead to turbulent 
breakdown (Herbert 1983; Orszag & Patera 1983). As such, the original two- 
dimensional disturbances are never observed in their full-amplitude, nonlinearly 
saturated, state. The present paper, however, deals with the behaviour of precisely 
those nonlinear two-dimensional waves in channel flows. We shall show that it is 
possible to construct, computationally, strictly two-dimensional flows with proper- 
ties such as chaotic behaviour, ejections and sweeps, large-scale intermittency, and 
quasi-periodic bursting, all of which are observed in fully turbulent three-dimensional 
flows. The range of behaviours described in this paper goes from the laminar to the 
chaotic, and, in that sense, this is a paper on transition. But the emphasis is in the 
understanding of turbulent flow as such, using a model that has been severely 
truncated in the spanwise direction, to become actually two-dimensional. 

This justifies in part the use of the attribute ‘turbulent’ for some of the flows 
encountered in this paper. We shall use it, for lack of a better word, to describe any 
flow whose time behaviour is chaotic, in the sense of being extremely sensitive to 
initial conditions, with a t  least one positive Liapunov exponent. Visual inspection of 
the corresponding flow fields reveals enough complexity to suggest that many of 
these flows are also strongly mixing, but that property will not be investigated. 
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Two-dimensional turbulence has been studied often, even if it is observed 
experimentally only under very special circumstances. There are several reasons for 
that, of which perhaps the most important is that it provides a simplified situation 
in which to study mechanisms that may be relevant to the three-dimensional case. 
Two-dimensional flows are easier to compute and, above all, much easier to observe 
than their three-dimensional counterparts, and the mechanisms that act in them can 
generally be analysed rather fully. The understanding gained from those analyses 
can sometimes be carried into three dimensions, even if only as an indication of which 
features are intrinsically three-dimensional, and which ones are not. 

Of the many papers dealing with two-dimensional turbulence, few treat 
statistically stationary self-sustaining flows. Typically, what is studied is the decay 
of an initially random vorticity distribution. While these studies are interesting, the 
fact that the only actual attractor of the flow is the rest state complicates the 
interpretation of what is being observed and prevents the study of such questions as 
asymptotic behaviour, unpredictability and chaos. All these are characteristic of 
three-dimensional turbulence, and should be part of any two-dimensional system 
that tries to model the same phenomena. 

It is not easy to find such a system. Most two-dimensional flows are stable, and 
many which are not, like free shear layers and jets, have integral scales that grow 
continuously in time. If they are studied in a finite computational, or experimental, 
box, they eventually hit its boundary, and either decay, or proper boundary 
conditions have to be provided, whose influence is uncertain. Spatially periodic 
Poiseuille flow offers a good model in which to look for self-sustaining two- 
dimensional turbulence. Above a critical Reynolds number, it becomes linearly 
unstable and develops finite-amplitude two-dimensional waves which eventually 
saturate (Herbert 1976). Under some circumstances, these nonlinear states become 
unstable and lead to more complicated motions. In fact, Jime'nez (1987, 1989) 
identified numerically a series of bifurcations into limit cycles, tori and chaos. 

It is that flow that we shall study here, through a full numerical simulation of the 
two-dimensional Navier-Stokes equations. The question of which mechanisms and 
structures from the two-dimensional channel are relevant to the three-dimensional 
case will not be discussed directly, and cannot be answered without a careful 
dynamical analysis of the three-dimensional case which is currently under way and 
will be the subject of future publications. What we shall do here is to consider the 
two-dimensional channel as an interesting flow in its own right, and to study it with 
the same techniques that are commonly used for natural turbulent flows. 

The numerical scheme, and, in general, the 'experimental ' set-up are described in 
$2. Sections 3 and 4 present the results of the simulations in short and long 
computational boxes. The next section discusses the Liapunov exponents of the flow, 
and the transition to chaos, and $6 presents briefly the average flow quantities, and 
their relation to three-dimensional channels. Finally some conclusions are offered. 

2. The numerical scheme 
h, h = 1, 

with a parabolic laminar equilibrium velocity profile U(y) = 1 -y2. It is governed by 
the two-dimensional vorticity equation 

Poiseuille flow is established between two infinite parallel plates at y = 
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where 9 is a stream function, generating the velocities u = @w, v = -@%, and 

w = v2+ (2) 

is the vorticity. We impose that the volume flux per unit span, Q = 4, remains 
constant. This is not the only possible choice. Other investigators have used a 
constant average pressure gradient (Herbert 1976 ; Saffman 1983 ; Rozhdestvensky 
& Simakin 1984), and have discussed the differences between the two cases. When the 
only solutions considered are those that can be reduced to a steady state in some 
frame of reference, both conditions are equivalent, since both flux and pressure are 
constant in time, and the choice reduces to a different parameterization of the 
solutions, which can be associated to two different Reynolds numbers. For the 
constant-flux case, Re, = 3&/4v, and for the constant-pressure one, Re, = - h3 
x (i3p/i3z)/2pv2. For uniform laminar Poiseuille flow, both numbers are identical, 
and, in other statistically stationary cases, they are related through the average 

(3) 
vorticity at the wall, w,, by Re, = x&es w,. 

Later, we shall find solutions that are unsteady in all frames of reference. For them, 
the two boundary conditions are intrinsically different, and give rise to different 
behaviours and stability properties (Saffman 1983 ; Pugh 1987). Even for asymp- 
totically steady flows, it has been observed often that the approach to equilibrium 
is different for both boundary conditions, being usually somewhat faster for the 
constant-flux case. This alone is a strong argument for the use of this boundary 
condition, in view of the computational cost implied by the long integration times 
needed for transition calculations. Rodzhdestvensky & Simakin ( 1984) report 
unsteady solutions that are approximately both constant flux and constant pressure, 
and imply that they are exactly so. We have not been able to confirm that. Our 
solutions are always constant flux, but the pressure gradient varies with time in the 
unsteady case, although the variation is, in some cases, relatively small. The 
Reynolds number in (l), and in the rest of the paper, is always Re,, unless explicitly 
declared otherwise. 

We study the behaviour of periodic disturbances of the form 
N 

w = - 2y  + ;I: Ok(y,  t )  eik=z. (4) 

A t  low Re, the parabolic profile is stable, but at Re = 5772 (a = 1.02), i t  bifurcates 
into a family of periodic travelling shear waves. This bifurcation is subcritical and 
can be continued at finite amplitudes to lower Re, until this ‘lower branch’ turns 
around near Re = 2700, and proceeds towards higher Re, forming an ‘upper’ branch 
with larger amplitudes (Herbert 1976). Other wavenumbers enlarge this picture into 
a continuous, cigar shaped, neutral surface with upper and lower sheets, restricted to 
a narrow range of wavenumbers, a x 1. The lower sheet is known to be unstable to 
two-dimensional disturbances, while the upper one is, at  least at moderate Re, and 
for superharmonic perturbations, not only stable but attracting (Zahn et al. 1974). 
Both branches are known to be unstable to three-dimensional perturbations (Orszag 
& Patera 1983), but those solutions will not be considered here. 

To investigate more completely the stability of the ‘upper sheet ’ solutions to two- 
dimensional disturbances, we integrate numerically the time evolution of the 
expansion (4) substituted in (1). The numerical scheme is spectral, and is described 
in the Appendix at the end of this paper. Initially, a small (w’ x random 
perturbation with a = 1 is added to the laminar flow, and allowed to grow. For 

k--N 
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supercritical Reynolds numbers, after a short transient, the growth of the 
perturbation is exponential up to fairly large amplitudes, agreeing well with the 
largest eigenvalue of the Orr-Sommerfeld equation. Growth can also be obtained for 
some subcritical Re by adding stronger initial perturbations to the flow. From the 
comparison of the predicted and observed linear growth rates, it can be estimated 
that the numerical error of the integration scheme, at the resolution described below, 
is equivalent to a shift of 1-2% in Reynolds number (for Re < 10000). From later 
tests on the effect of refining the integration time step and the computational grid, 
this is also the estimated accuracy of our nonlinear calculations. 

For low Reynolds number, the long-term limit of the growing solutions is a 
uniform steady train of nonlinear waves, lying in the upper sheet of the neutral 
surface. Once a solution is obtained in this fashion, the behaviour a t  different 
Reynolds and wave numbers can be explored by changing the parameters 
incrementally and using as initial conditions, in each case, the converged solution for 
a neighbouring point in parameter space. A preliminary exploration was done with 
M =  1. 

It is known (Herbert 1976; Pugh 1987) that, for the purpose of mapping the 
general characteristics of the steady wavetrains in the neutral surface, it is enough 
to take N = 4-8 in the Fourier expansion. We soon found, however, that the 
characteristics of the unsteady solutions are more sensitive to the number of modes 
and, especially, that the spatial structure of the flow field is rich enough to need more 
modes for a proper representation. Since part of our interest is in studying that 
structure, a comparative study of different spectral resolutions resulted in the choice 
of 83 Fourier modes (N = 41), and 85 Tchebichev modes (128 x 129 for de-aliasing). 
For Re < 10000, this choice results in Gibbs ripple amplitudes lower than 0.5% in 
the vorticity fields, and the magnitude of the first Fourier and Tchebichev 
coefficients neglected in the truncation of the vorticity expansion remains below 
and respectively. Also, when the resolution is decreased or increased by 50%, 
the variation in the averaged wall stress is less than 0.2%, and that of the r.m.s. 
value of its temporal oscillation, less than 2%. For comparison, the corresponding 
variations when the resolution is reduced to 15 x 65 modes are 0.2 YO and 30 YO. On 
the other hand the qualitative behaviour of the solution, including the first Hopf 
bifurcation of the nonlinear wavetrain, can be reproduced even with a single Fourier 
mode ( N =  l ) ,  although the quantitative results are grossly off. A t  the chosen 
resolution, the repeatability of the Reynolds-number thresholds between different 
kinds of unsteady behaviour is below the resolution of our scan, which is about 2 YO. 
Since the resolution study was done for Re close to  10000, the computations are 
probably over-dimensioned for lower Reynolds numbers. However, for' consistency, 
most of the results reported in this paper are computed with the same high 
resolution. In  those cases in which the computational box is enlarged, to contain 
several longitudinal wavelengths, the number of Fourier modes is increased 
accordingly. 

In  all the simulations the time step was kept small enough that the CFL number 
never exceeded 0.1. Higher CFL numbers tend to generate spurious chaotic 
behaviour, and this phenomenon was confirmed in at least one occasion by running 
the same initial conditions on an unrelated numerical code (Kim, Moin & Moser, 
1987). This limitation is probably unrelated to numerical instability, since numerical 
blow-up was seldom observed. However, it is easily seen that the numerical errors 
involved in the time integration of the shortest spectral modes contain the time step 
in the form of the CFL number, and with the present second-order scheme are 
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proportional to the square of the CFL. As a consequence, CFL numbers of order 
unity, while preserving stability, introduce O( 1) errors in the smallest scales 
presumably leading to the spurious behaviour . 

Each flow was run for between 1000 and 6000 time units, or until the evolution of 
the spatially averaged wall stress had converged to some given temporal behaviour, 
with stationary low-order statistics. It should be emphasized that those are fairly 
long times, corresponding, when reduced to flow length using the average mass flow 
velocity, to channel aspect ratios between 350 and 2000. At the highest Re, the 
streamwise power spectrum of the vorticity distribution, w ,  decays with the 
wavenumber as E2, owing to the presence of sharp vorticity sheets. In  the core flow, 
which is essentially inviscid, this decay extends to the computational cutoff after a 
drop of four decades but, near the walls, there is a viscous range, spanning a decade 
and a half in wavenumber, in which the drop is much steeper and the total decay 
correspondingly larger (see spectra in figure 21). 

3. Results for short boxes 
When the length of the computational box, 2a/a, is chosen so as to contain just 

one of the primary instability waves, a % 1, the flow reaches an asymptotic state 
which is dominated by large vortices of alternating sign, located near the centre of 
the channel, which induce strong secondary vorticity peaks near the walls. At low 
enough Reynolds numbers, the resulting wavetrain is steady, and moves downstream 
with a celerity of the order of U, z 0.350.4. I n  a frame of reference moving with that 
velocity, there are stagnation saddle points near both walls, along whose unstable 
outgoing branches some of the wall vorticity is carried into the core of the channel, 
forming sharp vortex sheets which are eventually diffused by viscosity, and which 
are the most striking characteristics of the flow (figure 1). 

When the vorticity equation is averaged over a streamwise wavelength and over 
time, it reduces to a flux balance across a given y-plane: 

<vw)--(-) 1 aw = const. = (g), 
Re i3y 

where ( ) is the averaging operator. The first term in the left-hand side of this 
equation is the cross-stream convective (Reynolds) vorticity flux, due to the 
unsteady motion, and the second one is the viscous diffusion flux. The same equation 
can be written in the form 

in which the correspondence of the terms is one to one, and which shows that the two 
vorticity fluxes are just the averaged divergences of the Reynolds and viscous stresses, 
driven by the streamwise pressure gradient. The two terms in ( 5 )  are plotted in figure 
2(a ) ,  for a steady wave. The results are similar for other cases, both steady and 
unsteady, and show an active wall layer, in which both fluxes are important, and a 
more quiescent core. It turns out that this picture is the result of a strong 
cancellation over time, as shown by figure 2 ( b ) ,  which represents the r.m.s. values of 
the temporal variation of the two terms in (5), always averaged over a full 
streamwise period. The scale of this figure is two orders of magnitude larger than the 
one in figure 2 (a) ,  proving that the instantaneous fluxes are much larger than their 
time averages. This is specially true in the channel core, which now appears as a 
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FIGURE 1. Flow maps for a steady equilibrium wavetrain in a short box. Re = 5000, u = 1.0. Flow 
from left to right. (a, b )  Vorticity ; isolines w = 0, f 1.5, k2.5, k3.5; shaded area is negative; (a)  
full computational box, ( b )  enlargement of lower wall region ; vertical extent y = 0.25 (y’ = 27). (c. 
d )  Streamlines; flow and geometry as above. Velocities refer to frame moving with wavetrain, 
U, = 0.353. 

‘turbulent ’ region, dominated by convective fluxes, as opposed to the laminar, 
viscous, layers near the walls. Defining ‘wall’ velocity and length scales in the usual 

u, = (w,/Re)f, y+ = y/6, = y/(u,Re)-;, (7) way, 

the thickness of the viscous layers in figure 2(b) is about 10-20 wall units, which is 
of the same order of magnitude as the viscous sublayer in natural three-dimensional 
plane channels. It will be seen later, however, that the magnitude of the turbu- 
lent fluctuations is quite different in these flows from their three-dimensional 
counterparts. 

The uniform steady wavetrains exist down to approximately Re = 2800, a = 1.3, 
for a range of wavenumber a x 0.9-1.6, and have been mapped before by Herbert 
(1976) and Pugh (1987), although at lower numerical resolution. A map of all our 
simulations used in the present paper is given in figure 3, where the steady 
wavetrains are shown as open diamonds. A comparison of our results with those of 
the previous investigations is difficult, since both authors use Re, as a parameter, and 
do not give enough information to relate it to Re,. However, Pugh gives some 
comparable results a t  the lowest Reynolds numbers, and his boundary for existence 
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0 0.1 
FIQURE 2. Cross-stream viscous (solid) and convective (dashed) vorticity fluxes : (a )  time 

average, ( b )  temporal r.m.8. fluctuation. Flow as in figure 1. 
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FIGURE 3. Summary of numerical simulations and flow regimes; 0,  Steady wavetrains; +, 
cycles; 0, tori; *, chaos; x ; decay to laminar; -, existence boundary for solutions (Pugh 1987), 
N = 2 ; - . - . -  , N =  1. 

of the steady solutions is included in the figure. Considering the differences in 
numerical resolution, the agreement is satisfactory. 

Above Re = 5400,a = 1.0, the steady wavetrains become unstable, and undergo a 
Hopf supercritical bifurcation into a limit cycle. A convenient variable to describe 
the temporal evolution of the flow is the instantaneous, space-averaged stress on the 
lower wall, Q = a,( - 1, t ) .  Below the bifurcation, this quantity is constant, but above 
it, i t  oscillates periodically (figure 4a), with an amplitude that depends on the 
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FIQURE~ 4. Time evolution of averaged vorticity at lower wall, for a short box. (a) One-frequency 
limit cycle; Re = 7000, a = 1.1 ; (b)  two-frequency torus; Re = 10OO0, a = 1.0. Total time interval 
is 1000 in both cases. 
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FIGURE 5. Averaged wall vorticity as a function of Reynolds number. (a) Time average: IJ, a = 
1.0; 0, a = 0.25 (long box); +, a = 0.125; +, x , (from Rozhdenvensky & Simakin 1984) a = 1.0 
and 0.3. ( b )  Temporal fluctuations: 0, total r.m.8. fluctuations, cycle or tori; ., peak-to-peak 
semi-amplitude fluctuations in tori. 
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Reynolds and wave numbers. At still higher Reynolds number, Re = 9200, a = 1.0, 
the solution bifurcates again into a two-frequency torus (figure 4 b ) .  The ratio of its 
two oscillation frequencies very close to 5.0 a t  the bifurcation, suggesting an initial 
dynamical resonance of the system, and i t  seems to stay locked a t  that value for a 
short range of Reynolds numbers (up to Re = 9500), but at Re = 10000 the ratio is 
T,,,,/T,,,,, = 4.6, and does not seem to be expressible as any simple ratio of integer 
numbers. 

At still higher Reynolds numbers, there is some evidence that the temporal 
behaviour of the oscillation becomes chaotic, but this regime was not mapped 
carefully, owing to  numerical resolution limitations, and also because it was felt that 
the interesting regimes were those a t  Reynolds numbers either subcritical to the 
linear instability threshold, or relatively close to it, in analogy to the situation in 
three-dimensional turbulent flows. In  fact, it will be seen in the next section that the 
flow in long boxes develops interesting behaviour at fairly low Reynolds numbers. 

on Reynolds 
and wavenumbers is given in figures 5 and 6, while figures 7 and 8 contain 
information on oscillation periods and phase velocities. The two first figures include 
some values of averaged wall vorticity from Rozhdesvensky & Simakin (1984). 
Although those computations were done at constant average pressure gradient, 

The dependence of the time-average and fluctuation amplitude of 
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FIQURE 7. Ejection period of limit cycle as a function of Reynolds number: 0,  a = 1.0; 

B, a =  1.1; x ,  a =  1.2; 0 =0.25;  +, a=O.125.  
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FIGURE 9. Time evolution of vorticity maps for an ejection cycle, Re = 10000, a = 1.0 (a torus). 
Flow from left to right and time from top to bottom. Frames are keyed in the wall-stress plot at  
the bottom. Isolines: o = 0, f 1.5. Each map contains two consecutive computational boxes for 
clarity. 

instead of constant mass flux, the agreement is reasonable, at least in those cases in 
which the wall vorticity oscillations are small. However, in the single case of a long 
box (u = 0.3) available for comparison, the correspondence is much poorer. Since it 
is shown below that long boxes are intrinsically unsteady, this is consistent with the 
idea that, in unsteady cases, the two sets of boundary conditions are not equivalent. 

It is clear from these figures that both the limit-cycle and torus bifurcations are 
supercritical in Reynolds number, with their amplitudes increasing roughly as the 
square root of the distance to the bifurcation point. It should be stressed that these 
two bifurcations are different from the original subcritical bifurcation from laminar 
flow. As described in the previous section, that bifurcation gives rise to a double sheet 
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of steady-state solutions, whose lower branch is unstable, while the upper one is 
initially stable, and is the one being investigated here. In  fact, in a frame of reference 
linked to the channel walls, the laminar bifurcation is also Hopf, going from steady 
laminar flow to a periodic oscillation corresponding to the passing of the 
TollmienSchlichting waves. This first oscillation can be absorbed by an appropriate 
choice of a moving frame of reference, or, as is the case of‘the plots in this section, by 
using space-averaged quantities to characterize the system. It should be realized, 
however, that to a laboratory observer the steady wavetrains would look like 
periodic oscillations, and the limit cycles and tori like flows with two and three 
frequencies. None of the two new bifurcations can be absorbed by a change in the 
frame of reference. 

The nature of the limit cycle is a periodic variation of the amplitude of the whole 
wavetrain. A time sequence of the flow (figure 9) shows that the vortex sheets 
originating at  one wall eject periodically, injecting extra vorticity in the channel 
core. Half a period later, the other wall ejects. The cycle can be understood in terms 
of the transverse velocity induced near the walls by the extra vorticity injected in the 
channel core by the ejections. 

Assuming that a vortex blob is injected in the channel core by an ejection from the 
lower wall. This small extra vortex is convected down the channel centreline, close 
to the maximum flow velocity, U x 1, which is higher than the translation velocity of 
the wavetrain, U, x 0.4. The extra positive vorticity induces an extra transverse 
velocity away from the top wall, and this ‘shadow’ outdraft travels with the vortex, 
just ahead of it,  as it is convected downstream. Eventually, the outdraft in the upper 
wall catches up with the stagnation point which is at  the base of the next vortex 
sheet ahead, and reinforces it for a moment. During this brief period, the amount of 
negative vorticity pumped by the stagnation point into the upper vortex sheet 
increases, and the upper wall ejects. The extra negative vortex injected in this way 
follows the same process as the previous positive one, and eventually generates a new 
ejection at the lower wall. From this description, the period of the ejection cycle 
should be of the order of T = 27c/a(U-Uc) z 10, and this is confirmed by the 
observations (see figure 7). 

The vortices generated by the ejections are eventually dissipated by viscosity 
(actually, after being reingested by the wall layers) and loose their capacity to 
produce further ejections. At  low Reynolds numbers, this happens even before they 
are able to produce a new ejection in the opposite wall, and the wavetrain is stable. 
As Re increases, they last long enough to trigger the opposite wall, and an instability 
appears with a single frequency, while at  still higher Re several vortices are present 
in the flow at the same time and the instability becomes more complicated. Some 
support for this mechanism is provided by the flows in figure 9, where the ejection 
in the upper wall roughly coincides with the passing of the vorticity residue from the 
one in lower wall, and by a similar sequence in figure 12. Additional evidence, in the 
form of sequences of vorticity fluctuations and near-wall streamlines, is given in 
Jimhez (1989). Note that, even if in a channel both walls are involved in the ejection 
cycle, this is not strictly necessary. If a nonlinear equilibrium wavetrain could be 
sustained in a boundary layer on a single wall, the extra vorticity from one ejection 
would eventually overtake the next wave, reinforcing the stagnation point and 
presumably regenerating the cycle. Some preliminary evidence for this mechanism in 
three-dimensional flows is discussed in Jimdnez et al. (1988) and Jim6nez (1989). 
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4. Results for long boxes 
The previous section deals with the behaviour of the flow when the computational 

box contains a single wavelength of the nonlinear wavetrain, which is thereby forced 
to be strictly periodic. In  this section, we study boxes long enough to contain several 
basic wavelengths. 

The numerical code is the same as before but the number of Fourier modes is 
increased so as to maintain the same absolute spatial resolution. Starting from a 
short box with a established nonlinear wavetrain, a = 1, the solution is extended 
periodically streamwise and perturbed slightly. If the new box is long enough, 
usually a t  least four wavelengths (a  = 0.25), the solution branches into a non- 
uniform state, whose long-term behaviour depends on the Reynolds number, but 
which never again approaches a uniform wavetrain. 

The investigation was conducted mostly at a = 0.25. At low Reynolds numbers, 
Re < 5000, the flow tends to a stable train of wave ‘packets’. Each packet is formed 
from several unsteady waves, each of which is similar to the ejecting 
TollmienSchlichting waves of the short-box simulations, but which differ in ampli- 
tude and phase among them. Each group contains a strong, active, leading edge and 
a slowly decaying trailing edge (figure 10a). The permanent character of the 
configuration was checked by following the flow for more than 1000 time units after 
it had apparently converged, with total integration times between 3000 and 6000. 
The resulting history of the averaged wall stress is periodic, with each period 
corresponding to an individual ejection (figure l l a ) .  The phase speed of the 
individual waves is similar to that of the uniform trains, but the propagation speed 
of the groups is faster (U,  x 0.754.8). In  fact, a movie of the flow shows that each 
individual wave is triggered by the front of the group, produces a strong ejection, and 
immediately begins to decay. However, the vorticity from this initial ejection is 
enough to trigger a new wave in the ‘undisturbed’ flow in front of itself, propagating 
the packet in this way (figure 12). In  this figure, the frame of reference moves with 
the phase velocity of individual waves, U, = 0.35, which appear almost stationary in 
the time sequence, while the group front, marked by the first ejection, moves forward 
faster. The figure contains both vorticity and Reynolds stress (-u’w’) maps. The 
vorticity tags the evolution of the general structure of the flow, but the stress maps 
highlight the active locations of the flow field, as distinguished from those in which 
the wave structure is mainly the result of former activity. The active front, the 
decaying tail, and the isolated character of the wave groups are clearly visible, and 
the basic propagation sequence is seen to be an ‘incoming’ high-stress event, 
followed by an ejection. Note that this corresponds to the classic Sweepejection cycle 
described in three-dimensional turbulent boundary layers and pipes by many 
investigators (see Cantwell 1981). 

Note also that the propagation mechanism seems to  be the same as the one 
discussed in the previous section for uniform wavetrains (figure 9). At the Reynolds 
numbers at which the steady wave packets exist, this mechanism is subcritical, and 
the flow needs finite-amplitude perturbations to be triggered. Moreover, the 
mechanism is not directly self-regenerating since the wall vorticity, once ejected, 
moves forward, and cannot again influence the vortex sheet from which it originated. 
In  short boxes, the forced spatial periodicity of the flow introduces a feedback that 
keeps individual waves from decaying, since each ejection feeds on itself through the 
periodic boundary conditions, and the result is a stable uniform wavetrain. In  long 
boxes each wave depends on the one behind it to be regenerated, and the outcome 
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FIGURE 10. Instantaneous vorticity maps for long boxes, a = 0.26. The limits of the shading scale, 
w = f3, do not reflect the full range of vorticity found in a thin layer near the wall (see figure 17). 
Vertical scaling; x 2. (a) Re = 4000, a permanent wave packet. (6) Re = 9O00, a chaotic flow. 

2.55 I (4 1 

2.42 I I 

2.50 

3.80 

3.30 I 
FIGURE 11. Time evolution of averaged vorticity at lower wall ; long box, a = 0.25. (a) Permanent 
wave packet; Re = 4000; ( 6 )  two-frequency torus, Re = 5000; ( c )  chaotic flow, Re = 9000. Time 
interval is 1000 in all cases. 

is a gradual decay. It is remarkable that a stable state can be maintained in which 
what is essentially a single active wave is sustained by continuously reproducing 
itself on the undisturbed flow in front, 

This same information is summarized in figure 13, which is an (2, t )  diagram. The 
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FIGURE 12. Time evolution of flow maps for the propagation cycle of a permanent wave packet, Re 
= 4000, a = 0.25. Flow from left to right and time from top to bottom. Frames are keyed to  wall 
stress plot at bottom. (a) Vorticity ; isolines, w = 0, k 1.6. (6) Reynolds stress; isolines, -u’d = 0, 
k0.02, k0.05, k0.08. Shaded area is below -0.02. 

vertical axis is the coordinate x-U,t, increasing upwards, and spans a full 
streamwise period of the computational box, wrapping on itself; the horizontal axis 
is time and runs from left to  right. Grey levels represent local vorticity a t  the lower 
wall, according to the wedge a t  the left of the figure, in such a way that a local 
vorticity minimum moving with the group velocity would appear as a horizontal 
dark strip. Those minima are used to trace the motion of individual Tollmien- 
Schlichting waves which, since they move a t  a slower velocity, U,, appear as 
downward-sloping dark lines. Grey intensity, or strip width, are an indication of 
wave amplitude. Each wave is born at  the top (and left) of the figure, and drops 
behind the front of the packet as its amplitude decreases. As this happens, new waves 
are generated, and the result is a coherent packet whose front moves with the group 
velocity, U,. This representation reinforces the impression given by the vorticity 
maps that a fraction of the length of the channel is essentially laminar, and suggests 
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FIQURE 13. (z,t)-diagram of vorticity evolution at the lower wall. Time from left to right and 
streamwise coordinate from bottom to top. Time interval is 50. Vertical extent is full computational 
box. Re = 4000, a = 0.25. Frame of reference moves with convection velocity, U, = 0.752. Grey 
wedge at left spans o = f 16; dark is negative. 

that each wave group can be approximated by a solitary wave packet, propagating 
by itself in an otherwise laminar channel. 

Solitary groups are important features in the solution of systems of equations. In 
some sense, which will not be explored here in detail, they correspond to homoclinic 
orbits in dynamical systems. These are orbits starting from a equilibrium state (in 
this case, laminar flow), and returning to it after a while. A homoclinic orbit itself 
needs an infinite time to be completed, or an infinitely long channel to develop, and 
is therefore impossible to observe experimentally. However, it organizes its 
neighbourhood of the phase space of the solutions of the system of equations, and it 
can be shown that a small perturbation to a homoclinic orbit generally gives rise to 
solutions looking roughly like cycles, with periods that are longer the closer the 
conditions are to the homoclinic solution. It can also be shown that not all of those 
approximate solutions are necessarily periodic, and that the long-term behaviour of 
a system in the neighbourhood of a homoclinic orbit will very often look like a chaotic 
superposition of ‘solitary ’ waves with different separations (see Guckenheimer & 
Holmes 1983, ch. 6). 

Wave packets in long two-dimensional channels, which seem to correspond to the 
same phenomenon described here, had been obtained before, at low numerical 
resolution, by Rozhdesvensky & Simakin (1984). Experimentally, solitary permanent 
packets of turbulent flow have also been observed. The best known examples are 
‘puffs ’ in transitional pipes (Wygnanski & Champagne 1973 ; Wygnanski, Sokolov & 
Friedman 1975), and spiral turbulence in Taylor-Couette flow (Coles 1965; Van Atta 
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FIGURE 14. Re = 5000, a = 0.25. (a)  (z, +diagram as in figure 13. Time interval = 290, U, = 0.753. 
Grey wedge, w = & 18. ( b )  Time evolution of averaged vorticity a t  lower wall. Timescale is the same 
aa in (a). (c) Time evolution of maximum absolute value of vorticity over full computational box. 
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FIGURE 15. as figure 13 but for: (a) Re = 7000, u = 0.25, U, = 0.798, w = +22;  ( b )  Re = 8000, 
u = 0.25, U, = 0.815, a = +25. Time interval = 350 in both cases. 

1966; Andereck, Liu & Swinney 1986). In fact, some visualizations of pipe puffs look 
strikingly similar to those in figures 10 and 16 of this paper (see figure 8 in 
Bandyopadhyay 1986). Both flows are too different from ours to permit a direct 
comparison, but it is probably significant that in both cases they occur in subcritical 
conditions. In fact Pomeau (1986) has argued, on fairly general grounds, that for an 
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instability front to propagate steadily in a laminar medium, the instability has to be 
subcritical. His analysis, though, predicts growth both at  the front and trailing edge 
of the perturbation, and does not allow permanent solitary packets without 
modification. 

When the Reynolds number is increased substantially above 5000, the laminar 
parts of the flow disappear, the flow field gets increasingly disorganized and its 
temporal behaviour becomes highly unsteady and chaotic (figures 10b and 11 c ) .  An 
interesting intermediate regime appears between both extremes, in the neigh- 
bourhood of Re = 5000, a = 0.25. Its temporal behaviour is a two-frequency torus, 
with a slow modulation of the wall vorticity that is almost an order of magnitude 
larger than the one due to the individual ejections (figure 11 b) .  

Its behaviour can be understood from the (x, t)-diagram in figure 14(a), which is 
again keyed to the group velocity. It can be seen that the flow is still basically a wave 
group, with an active front located near the bottom of the diagram, and a decaying 
trail that wraps around the top. This tail, however, is unstable, and periodically 
generates new growing packets (the diagonal patterns crossing the central laminar 
region), which travel in the wake of the main one at a slower velocity, and are left 
behind. These new packets are strong enough to grow by themselves and would 
probably become new independent wave groups if given enough time. In our 
simulation this never happens, and the secondary groups are engulfed by the front 
of the primary one once they come around the periodic box. At  this point both 
packets merge and the long cycle of the torus begins again. Figure 14 displays the 
flow history in the same horizontal timescale as for the (x,t)-diagram, and the two 
representations can be compared. Figure 14(b) is the averaged bottom wall stress 
that we have used before to summarize history, and it gives an idea of the overall flow 
activity. Figure 14 (c) shows the maximum instantaneous absolute value of the 
vorticity, anywhere in the flow, and characterizes the intensity of the strongest wave. 
It is seen that, right after the two packets merge, the maximum vorticity increases 
sharply, probably owing to the triggering of a very strong wave by the vortex patch 
resulting from the merging. This wave propagates itself in the usual manner, 
generating new waves ahead of itself, but of decaying magnitude. The decay seems 
to stabilize somewhat when it reaches a magnitude comparable with the vorticity 
levels of the solitary packets but, at  least in these comparatively short boxes, stops 
only when it is interrupted by the next packet collision. The average vorticity history 
follows the same pattern, but its rise is more gradual and precedes the collision 
because it includes a contribution from the growth of the secondary packet. 

This splitting-collision process seems to be the disorganizing mechanism for the 
flow at higher Reynolds numbers. In  fact, some sort of instability of the wave packet 
is inevitable as the Reynolds number is increased beyond the laminar instability 
threshold, since the decay of the waves in the tail of the packet assumes the existence 
of a stable laminar flow towards which to decay. Otherwise, the perturbations of each 
individual wave would trigger the linear instability. In fact, since the amplitude 
threshold that is needed to trigger the subcritical nonlinear instability becomes 
smaller as we approach the critical laminar Reynolds number, it can be expected that 
the splitting process will appear at  some subcritical Reynolds number, at which even 
the small residual perturbation, induced by an ejecting wave on itself, is enough to 
trigger a new ejection. This is consistent with observation. It will be shown in the 
next section that the time behaviour of the flow is chaotic for Re 2 6000, but the (x, 
t)-diagrams for these chaotic flows, given in figure 15, show that even in those cases 
the basic splitting-collapse mechanism is present. The difference seems to be that, at 
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higher Reynolds number, the secondary group grows more before it is reingested by 
the front of the primary one, and the details of the reingestion are more disorganised. 
Splitting of turbulent puffs has been observed in pipes by Wygnanski & Champagne 
(1973) for a range of Reynolds numbers intermediate between those of equilibrium 
puffs and those corresponding to growing turbulent slugs, and the subsequent 
coalescence of puffs to form turbulent slugs is mentioned in the same context by 
Rubin, Wygnanski & Haritonidis (1980). 

From the (x, t)-diagrams, it is possible to define typical phase and group velocities 
even for apparently chaotic cases. If the mechanism discussed above were true, the 
main secondary period in these flows, besides the short ejection period of the 
Tollmien-Schlichting waves, should be given by the length of the box and by the 
difference between the group velocities of the primary and secondary wave packets, 
T, = 2n/(Ug1-Ug2)a .  For a = 0.25, Tz w 100, which is close to the ‘long’ timescale 
observed in the time traces in figure 11 both for the torus and for the chaotic regimes. 

This raises the question of whether this period would increase to infinity for very 
long boxes, so that the amplitude distribution of the wavetrains will become steady, 
although not necessarily uniform, in an infinitely long channel. The obvious way to 
check this hypothesis is to run simulations on longer boxes, but this turns out to be 
extremely expensive, not only because the number of longitudinal modes becomes 
larger, but because the relaxation time of the flow increases proportionally to the box 
length. Nevertheless, we ran a few simulations on a box twice as long as the one 
described above, a = 0.125, although not all of them were continued long enough to 
make sure that an asymptotic state had been reached. The first experiments were 
intended to decide whether the permanent wave packets could really be described 
as solitary waves. These simulations were run as long as necessary, and the result 
was confirmed. When a Re = 4000, a = 0.25 wave packet is placed in a box twice as 
long (with the remainder of the channel left laminar) it retains approximately its 
initial length, leaving a large part of the channel undisturbed. Actually, the resulting 
flow is no longer strictly permanent, and the time history acquires a small 
modulation (T w 200), whose amplitude is a small fraction of that of the basic 
oscillation due to the Tollmien-Schlichting ejections. At  Re = 3000, this modulating 
disappears (see figure 16a for a vorticity map), and the resulting amplitude 
distribution is really permanent. However, this configuration is not unique. A 
different initial condition, in which two a = 0.25 packets are put in an a = 0.125 box, 
at  Re = 4000, results into a new permanent amplitude configuration with two 
unequal packets following each other (figure 16b). This configuration was followed 
for a very long time and, except for the periodic Tollmien-Schlichting ejections, 
propagates without change. 

Some attempts were made to use these two flows as initial conditions at higher 
Reynolds numbers. At Re = 5000, the single soliton immediately begins to oscillate, 
with an initial period T w 100, and eventually grows to fill the entire length of the 
channel with eddies of varying amplitude, which oscillate in an apparently random 
way but with a characteristic period that grows to be in the neighbourhood of T x 
250. On the other hand, the two-packet solution run at  Re = 7000 settles, after a long 
smooth transient, to a fairly regular two-frequency torus, with a long period, T w 
200. Neither of these two simulations was followed to their full asymptotic states. 
The computer effort involved in each of them, as well as in the permanent cases at  
lower Reynolds numbers, was in the order of a week of supercomputer time. Still, 
they suggest that the characteristic long period of the flow scales with the box length, 
at  least in those cases in which the Tollmien-Schlichting waves essentially fill the 



Transition to turbulence in two-dimensional Poiseuille Pow 285 

FIGURE 16. Instantaneous vorticity maps for very long boxes, a = 0.125. Shading scale as in figure 
10. Vertical scaling: x4.  (a)  An equilibrium wave group at Re = 3000. (b)  An equilibrium two- 
group configuration at Re = 4000. (c) A splitting group at Re = 5000 ; the small wave in the left is 
falling behind the large group in front. 
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FIGURE 17. Maximum vorticity as a function of Reynolds number: 0, u = 1.0; B, u = 1.25; 

0 ,  a = 0.25; +, a = 0.125; ----, slope 1.0; ......, 0.75. 

channel. The short period of the initial evolution of the soliton at  Re = 5000 is 
interesting since it is roughly the same as for the a = 0.25 box. In fact, as argued 
previously, these almost supercritical flows cannot be stable since the laminar flow 
in the tail of the soliton is unstable to very small perturbations. Thus, a soliton in an 
infinitely long channel and at a high enough Reynolds number would split 
spontaneously, on a timescale which is independent of the length of the box. It 
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appears that, for Re = 5000, this scale is approximately T = 100 and is observed in 
the initial evolution of the soliton. In fact, a snapshot of the flow during this initial 
evolution shows clearly the splitting process (figure 16c, the main front is at  the right 
of the figure, the secondary one is much weaker, near the left end). Later, as the 
laminar portion of the channel disappears, this argument ceases to hold and it is 
possible to reach steady amplitude distributions of the individually ejecting waves. 
The long-box experiments described here suggest that this asymptotic state, if it 
exists, is not a uniform wavetrain. 

For long boxes with varying amounts of laminar flow the averaged wall vorticity, 
which was used in the previous section to characterize the overall level of activity of 
a given solution, is no longer a good choice. A better quantity is the maximum 
absolute value of local vorticity, which is also always observed at  the wall. Its 
dependence on Reynolds number is shown in figure 17, which is a log-log plot and 
contains some results of short boxes for comparison. Since this figure refers to 
different flow regimes and wavelengths, the results have a large scatter, but they give 
some idea of the evolution of intensity with Re. The figure contains straight lines that 
correspond to the laws w Re and Re:. The first one fits the data approximately, 
while the second, which is also not too far off, is the commonly accepted dependence 
of wall stress with Reynolds number in fully turbulent three-dimensional channel 
flows (Dean 1976). 

Henshaw, Kreiss & Reyna (1989) have argued that a lengthscale, Smin= 
(wmaxRe)-;, can be defined using the maximum local vorticity, in the same way that 
wall units are defined in terms of the average wall vorticity, and that this is the scale of 
the smallest features of the turbulent flow field. In free two-dimensional shear flows, 
the maximum vorticity depends only on the initial conditions, and the smallest scale 
decreases as Red. In wall-bounded flows, however, figure 17 show that the vorticity 
increases with Re, and, as a consequence, the corresponding smallest scale behaves 
like Rep1, imposing a stronger constraint on numerical simulations. 

5. Liapunov exponents 
A different view of the transition of the flow from order to chaos can be gained 

through the study of its Liapunov exponents, which are a generalization of the 
stability eigenvalues of an equilibrium state to the case of evolving systems (see 
Guckenheimer & Holmes 1983, pp. 28S288, for a rigorous discussion). Consider two 
different time histories of the same flow, originating from slightly different initial 
conditions, and define a distance between instantaneous flow configurations. Here, 
we shall use the L, norm of the difference between the full vorticity distributions. As 
long as the two flow histories stay close enough to each other, their difference satisfies 
a linearized equation, and it can be shown that, for most systems and for most pairs 
of initial conditions, the distance between the two solutions behaves, over a 
sufficiently long time, as exp ( A t ) .  The real number A is the largest Liapunov exponent 
(LLE) of the system. 

Intuitively, this exponent measures how unstable a given flow history is, and 
which is the timescale in which the system becomes unpredictable. It is generally true 
that systems with bounded solutions and a positive LLE are chaotic, since the 
solutions have to grow exponentially apart while still remaining in the same bounded 
domain. The magnitude of the LLE, compared to the other timescales in the flow, is 
a measure of the intensity of the chaos. Note that a zero LLE implies that two 
solutions will drift apart at most linearly, while a negative one means that they will 
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FIGURE 18. Time evolution of instantaneous largest Liapunov exponents, a = 0.25. Total 
time interval in all cases is 500. (a) Re = 4000, (b)  5OO0, (c) 6000, (d) 8000. Integration interval, 
T = 0.05. 

collapse towards each other. Since all the systems considered here are invariant to a 
translation in time, their LLE is guaranteed to be a t  least zero. 

An algorithm for computing the LLE of an arbitrary systems is given in Wolf 
et al. (1985) (see also Vastano & Kostelich 1986). The obvious method of starting two 
neighbouring solutions and watching them grow apart fails numerically because the 
exponential growth, coupled with the requirement of linearity, requires the use of 
initial conditions that are too close for the numerical resolution of computers. The 
answer is to break the calculation into small time intervals, in each of which the 
separation is allowed to grow a little. After each interval, and before the next one is 
initiated, the separation is rescaled to a small, linearizable value. Consider an initial 
condition, w(O) ,  and a nearby one w ( 0 )  +w’(O),  such that Ilw’(0)ll = E. After a time T, 
they evolve into w(T) and o(T)+w’(T), which we can use to compute an estimate of 
the Liapunov exponent over that first time interval. The next step is to normalize the 
new separation so that its norm becomes again E .  The new initial conditions for the 
next time interval are w(T), and w(T) +ew’(T)/IIw’(T)II. As the process is repeated, we 
generate a time series of ‘instantaneous ’ Liapunov exponents, 

L,(T) = (1/T) In ~ ~ w ’ ( ! 7 ’ ) / ~ / ,  n = 0,1, ..., 
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FIGURE 19. Largest Liapunov exponent as a function of Reynolds number, a = 0.25: 
m, long-term averaged LLE; 0, reduced variance, p ,  for T = 20 (see text). 

whose long-term average tends to the LLE. The results using an integration interval 
T = 0.5 and after discarding an initial transient of the order of 1000 time units, are 
shown in figure 18 for several Reynolds numbers and 01 = 0.25. In  all cases the 
calculation of the exponents was started from an already stationary flow (T b 2000). 
The corresponding long-term averages are given in figure 19. Below Re = 5000, the 
LLE is zero, and the flow is deterministic. Above that value, chaos appears and, for 
Re = 8000, the LLE is fairly large, although still an order of magnitude below the 
inverse of the ejection period of the flow, T x 13, which is the basic timescale. This 
implies that, even a t  that Reynolds number, the flow still has a substantial 
deterministic component, in accord with the information of the time histories in 
figure 11, and of the (2, t)-diagrams in figures 13-15. 

In  the case of figure 18(a) for Re = 4000, the long-term zero average of the L, is 
formed by an alternation of stable (negative) and unstable (positive) cycles that 
cancel out precisely. The frequency of the oscillation is twice the ejection frequency 
of the Tollmien-Schlichting waves, and a comparison of the time evolution of the 
Liapunov exponent with simultaneous motion pictures of the vorticity maps shows 
that the unstable time intervals are associated with the shear-layer ejections from 
both walls into the core flow, while the stable segments are associated to the viscous 
collapse of the layers. 

Equally deterministic is the case of the torus a t  Re = 5000 in figure 19. I ts  LLE 
also vanishes through long-term cancellation of regions of very diiferent character. 
For a while, the instantaneous exponent rises steadily as the flow becomes more and 
more unstable, and then collapses suddenly after a few wide oscillations. These 
oscillating parts of the Liapunov history coincide with the maxima of the averaged 
wall stress in figure 14(b), and the oscillations themselves correspond to the sharp 
oscillations in the maximum vorticity shown in figure 14 ( c ) .  Therefore, the steady 
increase of the instability corresponds to the growth of the secondary puff in the tail 
of the primary one, while the collapse of the flow corresponds to the collapse of the 
instability exponent. 
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FIGURE 20. Reduced variance, p(T) ,  as a function of integration interval, OL = 0.25: 

0, Re = 5000; 0, 6000; +, 8000. 

Benzi et al. (1985) suggest that the variance, v2, of the sequence of L, can be used 
to characterize the temporal intermittency of the flow. For a given system, different 
sequences can be constructed by varying the integration interval T ,  and can be 
simulated by forming running averages from a basic sequence constructed with some 
short time interval. If the basic process is random enough to satisfy the central-limit 
theorem, the quantity p = Tg2(T) is independent of T ,  for sufficiently long intervals. 
In this case, the distribution of the L, becomes normal, and the long-term behaviour 
of the divergence of the two trajectories is given solely by the ratio p/A. It is shown 
in that paper that, when p < A ,  the intermittence can be considered a small 
perturbation to the chaotic behaviour of the flow, while the opposite is true if y is of 
the order or greater than A. 

The evolution of p ( T )  with the integration interval is given in figure 20 for 
several Reynolds numbers. For the chaotic cases, there is a plateau on which p is 
approximately constant, and in which the central-limit assumption seem to hold. It 
corresponds to integration intervals that are long enough to smooth the oscillations 
due to the basic ejection cycle, but still short with respect to the timescale of the 
splitting-collapse process of the wave packets. Taking T = 20 as a representative 
value for this intermediate time-scale, even in the deterministic cases in which no 
plateau exists, we obtain the values of ,u which are given in figure 19. From the above 
criterion, and from the previous analysis of flow behaviour, it appears that there is 
a short range between Re = 5000 and 6000 in which intermittency may be important, 
especially in the neighbourhood of the deterministic torus at  Re = 5000 but that, 
beyond that range, the chaotic behaviour is well developed and continuous. Since 
this behaviour is associated to a timescale that averages out the ejection cycle, we 
confirm the previous conclusion that the appearance of chaos is not directly 
connected with that cycle but with the splitting and collision of the wave packets. 
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6. Turbulence statistics 
It has been noted often that two-dimensional turbulence, if it exists at all, is not 

enough to explain the phenomena observed in real three-dimensional turbulent 
flows. This is also true of two-dimensional Poiseuille flow (Orszag & Patera 1983; 
Rozhdesvensky & Simakin 1984). Vortex stretching is missing in two dimensions, 
and the character of turbulence becomes quite different. In particular, the Liapunov 
exponents of the chaotic behaviour computed in the last section are an order of 
magnitude smaller than that measured by Keefe, Moin & Kim (1987) for a three- 
dimensional channel at  a somewhat lower Reynolds number. That the two- 
dimensional transitional instabilities of laminar Poiseuille flow are slower than the 
three-dimensional ones was known previously (Orszag & Patera 1983). The present 
evidence implies that this is also true for the fully developed case, although the 
present Liapunov exponents are already an order of magnitude larger than the 
viscous eigenvalues, O( l/Re), of the two-dimensional linear instabilities. 

Figure 21 contains the streamwise power spectrum of the vorticity field in one of 
the long-box chaotic flows. The spectrum given by the solid line is averaged across 
the whole channel, while the dot-dashed one is computed at  the wall. The full 
channel result contains a self-similar range that continues beyond the numerical 
cutoff, while the near-wall spectrum is dominated by viscosity and decays sharply 
much sooner. The slope of the ‘inertial’ range is close to -2, which corresponds to 
an energy spectrum exponent of k = -4. Similar values have been measured in the 
long-term behaviour of two-dimensional turbulence by Benzi, Patarnello & 
Santangelo (1987) and Henshaw et al. (1989). The second of these papers identifies 
this decay rate with the formation of coherent structures in the mature flow, in 
distinction to the k = -3  drop-off postulated by the enstrophy cascade theories 
(Kraichnan 1967; Batchelor 1969), and observed in the early stages of two- 
dimensional simulations when the energy dissipation of the flow is largest. In the 
present context, it is clear that the -2 exponent of the enstrophy spectrum is 
associated with the presence of sharp vortex sheets, which are clearly visible in the 
flow maps, and which were the essence of the original argument used in Saffman 
(1971) to predict the k = - 4  behaviour of the energy spectrum. 

Figure 22 contains averaged profiles of the low-order statistical quantities for the 
same long-box simulation. This is a Re = 8000, a = 0.25 case, and is the highest 
Reynolds number for which enough data were stored for a reliable statistic. I t  has a 
Re, = u, h/v = 163, which is reasonably close to that of Re, = 140 for the three- 
dimensional channel in Kim et al. (1987). The two flows can be compared directly, 
and they are very different. The two-dimensional average velocity profile has a thin 
steep laminar layer near the wall, somewhat reminiscent of the steep profiles of 
turbulent boundary layers, but is otherwise quite close to the laminar parabolic flow. 
In particular, it shows an excess velocity at  the channel centreline, instead of the 
velocity defect that is typical of three dimensional turbulent cases. The velocity 
fluctuation profiles are also different. The two peaks in u’ are also found in three 
dimensions but are much sharper in that case, with maxima close to the edge of the 
viscous sublayer (y’ x lo),  while here they are wider and centred further into the 
channel (y’ z 60). They are also stronger in the two-dimensional case, both in 
absolute value (by a factor of 2) and in wall units (by a factor of 4). The d profile is 
also stronger here than in three dimensions, and peaks at  the centre, while in natural 
flows it is usually much flatter. 

Figure 22 ( c )  shows the Reynolds stress profile, together with the linear total stress 
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FIGURE 21. Streamwise power spectra of vorticity field, Re = 8O00, a = 0.25. Each division 
of the vertical axis represents one decade. -, spectrum integrated over full flow field; -.-.-.-, 
at wall. Spectra are averaged over 255 dimensionless time units. Dashed straight line has slope -2. 
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FIGURE 22. Re = 8000, a = 0.25. (a) Average velocity profile; ----, U -  l--ys; (b) Velocity 
fluctuations : -, u'; __-- , v'. (c) Reynolds stress, -w'v'; ---- , - d o ' +  (l/Re)aU/ay. 
Fluctuating quantities and stress are normalized with the friction velocity, u,. 

derived from the pressure gradient. The difference between the two quantities is due 
to viscosity. In fully developed three-dimensional flows, both profiles are very similar 
to one another outside the viscous layer, while here viscosity retains its importance 
throughout the channel, at  least in an average sense (see discussion for figure 2). 
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Nevertheless the evolution of the stress profiles with Reynolds number shows a 
steady evolution from viscous distributions towards more turbulent ones, and it may 
be that, at higher Re, there are asymptotic states in which Reynolds stresses 
dominate the full profile. The evolution of the Liapunov exponent in figure 19 also 
suggests that transition has not been completed at  Re = 8000. 

The dependence on Re of the friction coefficient, which is directly related to the 
averaged wall vorticity in figure 5,  is also different from three dimensions. Expressed 
in terms of friction velocity, a best fit in the range Re = 5000-10000 is u, = 
0.246Re2°.2s. This corresponds to friction coefficients that are a factor of two smaller 
than the values recommended by Dean (1976) for fully turbulent three-dimensional 
channels, and which are described, over a wider range, by u, = 0.123Re6°-125. 

In summary, the turbulent flow described here is very different from that observed 
in three dimensions, although not necessarily weaker, as shown by the velocity 
fluctuations. It looks as if transition has not been completed at the highest Reynolds 
numbers studied in this paper, and it is not clear whether a fully turbulent state 
could be achieved at  higher Re. While all the regions of the flow differ significantly 
from the three-dimensional case, the most striking differences are near the centre of 
the channel, where the Reynolds stresses are much too low, and the shapes of all the 
profiles are almost opposite to the natural case. This is not surprising, since it is in 
this region that the turbulence of a three-dimensional channel is more developed and 
isotropic, and therefore presumably less similar to the two-dimensional turbulence 
found here. 

7. Discussion and conclusions 
As explained in 8 1, the purpose of this paper was to see whether an equilibrium 

two-dimensional turbulent flow could be generated and studied. We have seen a 
series of states of two-dimensional Poiseuille flow that go from the fully laminar to 
fairly unsteady and chaotic, although there are indications that all those flows are 
transitional, and that the Reynolds number would have to be increased even further 
to achieve real, Reynolds-number independent, asymptotic, two-dimensional 
channel flow. Some indication of the distance to fully developed turbulence is shown 
by the distance of the Reynolds stress profile to the asymptotic straight-line 
behaviour (figure 22c) .  This difference decreases with increasing Re, and a rough 
extrapolation of its evolution points to Reynolds number of the order of 15000-20 000 
with fairly long boxes, which are outside a reasonable expenditure of present 
computer resources. That experiment remains a subject for future studies. 

In any case, even if asymptotic (two-dimensional) turbulence was not reached, 
many of the flows studied here are clearly transitional and, in particular, we have 
shown that they are chaotic, with divergence timescales intermediate between the 
viscous times, O(Re), and the inertial scale, which turns out to be T x 10. 

The mechanism of the transition to chaos was studied in detail. The basic 
bifurcation leads to unsteadiness of the sharp vortex sheets ejected from the wall by 
the nonlinear Tollmien-Schlichting waves, and is mediated by the secondary 
updrafts induced at  the walls by vorticity inhomogeneities in the core of the channel. 
The original TollmienSchlichting waves are actually due to this same mechanism 
but seem to reach a steady saturation state only in the artificial case of a periodic 
wavetrain forced by the boundary conditions of short computational boxes. Even in 
this case, the influence of the ejections from one wave to the one in front of it leads 
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to a limit-cycle behaviour at high enough Reynolds numbers, and to more 
complicated tori at  still higher Re. 

When the condition of spatial periodicity is relaxed by the use of longer 
computational boxes, the uniform wavetrain turns out to be unstable. No longer able 
to feed on themselves through the periodic boundary conditions, the individual 
waves decay, and the flow is maintained only through the propagation of a strong 
front by means of the induction of a single strong ejection on the fluid ahead of itself. 
One interesting discovery is that the basic structure of these long boxes, a low 
Reynolds numbers, is a ‘soliton ’ of ejecting Tollmien-Schlichting waves, with a 
strong propagating front and a decaying trail, and with much of the flow remaining 
essentially laminar. Traces of this structure can be found at higher Reynolds 
numbers, in which case i t  becomes unstable and splits into secondary groups, which 
later collide among themselves and are the main agents of the appearance of chaos. 
There are indications that the frequency of the collisions decreases for very long 
boxes, and that the resulting flows may be more ordered, even if still unsteady. It is 
not known whether a infinitely long channel would sustain an essentially stationary 
train of solitons at all Reynolds numbers. Such a train, containing two back-to-back 
unequal wave groups, was found in the case of a very long box at  Re = 4000, but this 
same solution when carried to a higher Re began to oscillate spontaneously. 
However, the possibility that the chaos is an artefact of the finite box size and would 
disappear for very long boxes cannot be discounted completely by the present 
experiment. On the other hand, the relaxation time needed by the flow to reach its 
asymptotic state seems to be also proportional to the box length, and it is probable 
that the steady state, if it is ever reached for an infinite channel, will take such long 
times as to be of no observational importance. As it is now, the time needed by the 
flow to settle to a steady soliton at  Re = 4000 in an a = 0.125 box is T = 3000, which 
correspond to about 1000 channel ‘diameters’ at  the mass flux velocity. Some of the 
simulations a t  higher Reynolds numbers, even with much shorter boxes, took twice 
as long to converge to their asymptotic behaviour. 

The phenomena of soliton generation, splitting and collision, with the consequent 
generation of turbulence, bring to mind the classical descriptions of transition in 
circular pipes and perhaps also the phenomenology of spiral turbulence in 
Taylor-Couette flow, even if we have shown in the last section that the details of the 
two-dimensional turbulence described here are very different from those of the three- 
dimensional case. It is possible that the underlying similarity may not be so much the 
detailed mechanism of turbulence production, but a more general characteristic of 
the saturated states of subcritical instabilities. The fact that many of the asymptotic 
states presented here can be described as trains of unsteady waves with slowly 
varying amplitudes (and maybe phases) suggests that they may be described by 
some simplified amplitude equation, and that this may be the unifying link 
accounting for the similarities between the different flows. The observation by 
Pomeau (1986) cited above on the question of fronts and subcritical instabilities was 
made in this amplitude-equation context. It is known that, under some circum- 
stances, the amplitude of the Tollmien-Schlichting waves in Poiseuille flow 
satisfies the Ginsburg-Landau equation (Stewartson & Stuart 1971) and, although 
no stable solitary wave solution to this equation is known, it has been shown recently 
that the inclusion of a quintic nonlinearity leads to the appearance of solitary wave 
packets, under subcritical conditions, that are not only stable but attracting (Thual 
& Fauve 1988). These packets do not undergo the processes of splitting and 
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coalescence that seem to characterize transition in plane channels and pipes, but 
there are indications that the addition of simple, and physically meaningful, extra 
dispersive terms to the equation is enough to produce these phenomena. This matter 
is now under active investigation, and the result will be the subject of future 
publications. 

In summary, we have presented the phenomenology of transition in a two- 
dimensional flow, which is, by necessity, very different from its three-dimensional 
counterpart studied up to now. The fact that so many similarities appeared was a 
surprise. Some of them, like the presence of velocity sweeps, and vorticity ejections 
from the wall, both in two- and three-dimensional channels, can be attributed to 
similar physical mechanisms in both flows, but others, like intermittency, solitary 
turbulent patches, and the route to chaos itself, may be more fundamental and may 
correspond to general properties of subcritical instabilities. The availability of a well- 
characterized new model that exhibits all these phenomena should aid in the 
understanding of what is intrinsic and what is accessory to the different aspects of 
turbulence. 
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Appendix 
The numerical procedure uses Tchebichev expansions in y for each of the 

coefficients of the expansion (4), and a fully de-aliased collocation approximation, in 
both 5 and y, for the nonlinear terms of equation (1) .  The time integration is a split- 
step finite-difference scheme, and the boundary conditions are applied at the end of 
the last partial step using an influence matrix technique. We define perturbation 
velocities with respect to the parabolic profile as ~ c . ,  = u = U(y) +Zi and ~z = -v. The 
resulting evolution equation for each of the Fourier components in (4) is 

k2a2 a252k 

] [ A :  E] ikaU(y)+- Q k = -  u-+w-- +--. 
Re Re ay2 

The bracket on the right-hand side represents the kth Fourier components of the 
perturbation convective term, and it is computed pseudo-spectrally with full de- 
aliasing by using the t rule (Orzsag 1971). The rest of the equation is handled directly 
in spectral representation. The streamwise viscous diffusion and the convection due 
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to the laminar profile are left in the left-hand side of (A l), and integrated exactly, 
helping to reduce the CFL restriction. The result is 

where S,(y) = ikolU(y)+k2a2/Re, Fk(y,t) = (A 3% b)  

The first integral in the right-hand side of (A2) is computed by a second-order 
Adams-Bashforth formula, while the second one is approximated by simple reverse 
Euler. The result can be written as a split-step scheme 

f i , ( t )  = e-AtS* [ n , ( t )  + efSkF,(t + 6 )  dg] , (A 4a) 
0 

At C1252,(t + At) - 
& @ + A t ) - -  = Q,(t). 

Re ay2 

The fist step is fully explicit, while the second one is a Poisson solver, which is easily 
handled in the Tchebichev representation (Gottlieb & Orszag 1977). The same is true 
of the solution of equation (2), which is needed to close the time step, and which 
results in 

- k2a2$,(t + At) = O,(t + At), aZ$,(t + ~ t )  

aY2  

where the +&) are coefficients of a Fourier expansion for the stream function, 
similar to (4). 

The boundary conditions are 

% ( * I )  = o ,  erb(*l) = 0. 
a Y  

They are applied using a Tchebichev tau method. Two of them can be used directly 
when solving equation (A 5), but the other two have to be applied to the vorticity, 
even if they are expressed in terms of the stream function. This is done using an 
influence matrix technique. The partial steps (A 4b) and (A 5) are applied three times 
for each time step, in each case satisfying the conditions ( A  6 a ) ,  but with a different 
value for d,. The first application, whose result we will call Q,,,, $ko, uses as a starting 
point the result of (A4a).  The other two, which are equivalent to the tau 
approximation, are started with d,, = T,(y), and O,, = T,-l(y), which are the 
two highest-order Tchebichev polynomials used in the expansions for the vorticity 
components. The final result for t + At is formed as the linear combination 

Q,( t+At )  = O,o(t+At)+PiQ,i+P,Q, , ,  
$ k ( t + A t )  = $.,O(t+At)+P,$,l+P2$,21 

where the coefficients are chosen so that the final stream function satisfies also the 
conditions ( A 6 b ) .  Note that the vectors Q k l ,  Qk,, and the corresponding stream 
functions, are constant and only have to be computed once at the beginning of the 
integration. Fairly similar methods have been used by Deville, Kleiser & Montigny- 
Rannou (1984) for a Stokes problem, and by Kim et al. (1987), for a problem similar 
to the one discussed here. 
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